The Substituent Effect on the Ultraviolet Spectrum of 1, 2-Diphenyltetramethyldisilane¹⁾

By Hideki Sakurai, Hisayoshi Yamamori and Makoto Kumada

(Received August 19, 1965)

It has previously been reported from this laboratory²⁾ that polysilanes with phenyl or vinyl groups, unlike monosilanes, have a very intense absorption in the ultraviolet region. This interesting ultraviolet property of polysilanes has been studied by several groups of workers in recent years.³⁻⁵⁾ These investigations are in accord with the view that the silicon-silicon bond is essential as a chromophore in making an enhanced conjugation with pi-electron systems.

$$X- \left\langle \begin{array}{c} Me \ Me \\ -\dot{S}i - \dot{S}i - \dot{S}i - \left\langle \begin{array}{c} -Y \\ Me \ Me \end{array} \right\rangle - Y$$

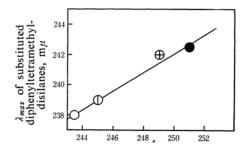
$$Me \ Me$$

$$X- \left\langle \begin{array}{c} Me \\ -\dot{C} - \dot{C} - \left\langle \begin{array}{c} -Y \\ Me \end{array} \right\rangle - Y$$

$$Me \ (II)$$

TABLE I. UV SPECTRA OF SOME 1, 2-DIPHENYL-TETRAMETHYLDISILANES^a)

Substituent		λ_{max}	
x	Y	$m\mu$	$\varepsilon \times 10^{-4}$
none		238.0	1.85
p -CH $_3$	p-H	238.5	2.11
p -CH $_3$	p -CH $_3$	239.0	2.49
p-CH₃O	p-CH ₃ O	242.0	3.26
p-CH ₃ O	p-H	241.0	2.58
p-CH ₃ O	p-CH ₃	241.5	2.82
p-Cl	p-Cl	242.5	2.80
p -CH $_3$	p-Cl	240.5	2.46


 a) Spectra were obtained in n-hexane with Shimadzu SV-50A automatic recording spectrophotometer.

(1964).

We have now prepared several derivatives of 1,2-diphenyltetramethyldisilane (I) 60 and examined their ultraviolet absorption spectra (Table I).

Bathochromic shifts of the first intense band of the parent compound are observed with all the available *para*-substituted derivatives; apparently the bathochromic effects of substituents are additive.

It is of considerable interest to compare the ultraviolet spectra of these compounds with those of the correspondingly-substituted *trans*- α , α' -dimethylstilbenes (II). As may be seen in Fig. 1, there is a linear correlation between

 λ_{max} of substituted trans- α , α' -dimethylstilbenes, m μ

Fig. 1. Correlation of λ_{max} of diphenyltetramethyldisilanes with λ_{max} of trans- α , α' -dimethylstilbenes

Unsubstituted
p, p'-Dimethyl
p, p'-Dimethoxy
p, p'-Dichloro

the absorption maxima of the disilanes (I) and those of the stilbenes (II).

Further details will be published later.

Department of Synthetic Chemistry Kyoto University Sakyo-ku, Kyoto

Presented in part at the 18th Annual Meeting of the Chemical Society of Japan, Osaka, April, 1965.
 H. Sakurai and M. Kumada, This Bulletin, 37, 1894

³⁾ D. N. Hague and R. H. Prince, Proc. Chem. Soc., 1962, 300.

⁴⁾ H. Gilman, W. H. Atwell and G. L. Schwebke, Chem. & Ind., 1964, 1063.

⁵⁾ H. Gilman, W. H. Atwell and G. L. Schwebke, J. Organometal. Chem., 2, 369 (1964).

⁶⁾ Details of preparations will be published elsewhere.
7) Y. Nagai, J. Soc. Org. Synth. Chem. Japan, 19, 464 (1961).